论文标题

弱小的同胞学课程和对格罗莫夫猜想的反例

Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov

论文作者

Ascari, Dario, Milizia, Francesco

论文摘要

我们展示了一个有限的群体,其第二个共同体包含一个薄弱的阶级,但没有有限的阶级。作为一种应用,我们反驳了格罗莫夫的长期猜想,内容涉及封闭歧管的通用覆盖物上的差异形式的有界原语。

We exhibit a finitely presented group whose second cohomology contains a weakly bounded, but not bounded, class. As an application, we disprove a long-standing conjecture of Gromov about bounded primitives of differential forms on universal covers of closed manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源