论文标题

与结构组$ u(n)\ times o(s)$的歧管的共同体学

Cohomology of manifolds with structure group $U(n)\times O(s)$

论文作者

Raźny, Paweł

论文摘要

我们引入了一个新的光谱序列,以研究$ \ Mathcal {k} $ - 流形,该序列是通过限制Riemannian叶片的光谱序列而产生的,以在$ \ {ξ_1,...,...,ξ_s\} $的流量下形成不变性。我们使用此序列将许多定理从$ k $ -contact几何形状到$ \ MATHCAL {K} $ - 歧管。最重要的是,我们计算$ \ Mathcal {s} $的谐波圈和谐波形式 - 分别(分别是原始的基本同谋和原始基本谐波形式)(分别)。作为此的直接结果,我们得到$ \ Mathcal {s} $ - 歧管的基本共同体是拓扑不变的。我们还表明,$ \ Mathcal {S} $ - 歧管的基本Hodge数字在变形下是不变的。最后,我们为$ \ Mathcal {C} $ - 歧管提供了类似的结果。

We introduce a new spectral sequence for the study of $\mathcal{K}$-manifolds which arises by restricting the spectral sequence of a Riemannian foliation to forms invariant under the flows of $\{ξ_1,...,ξ_s\}$. We use this sequence to generalize a number of theorems from $K$-contact geometry to $\mathcal{K}$-manifolds. Most importantly we compute the cohomology ring and harmonic forms of $\mathcal{S}$-manifolds in terms of primitive basic cohomology and primitive basic harmonic forms (respectively). As an immediate consequence of this we get that the basic cohomology of $\mathcal{S}$-manifolds are a topological invariant. We also show that the basic Hodge numbers of $\mathcal{S}$-manifolds are invariant under deformations. Finally, we provide similar results for $\mathcal{C}$-manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源