论文标题
分析反演的非加性动力势双功能的核尖和奇异性
Nuclear cusps and singularities in the non-additive kinetic potential bi-functional from analytical inversion
论文作者
论文摘要
非添加动力学潜在$ v^{\ text {nad}} $是密度官能理论(DFT)嵌入方法的关键数量,例如冷冻密度嵌入理论和分区DFT。 $ v^{\ text {nad}} $是电子密度的双功能$ρ_{\ rm B} $和$ρ_{\ rm tot} =ρ_{\ rm a} +ρ_{\ rm a} +ρ_{\ rm b b} $。可以使用近似动力学功能对其进行评估,但是准确的近似值具有挑战性。 $ v^{\ text {nad}} $在核的附近的行为长期以来一直受到质疑,并且在一些近似计算中看到了奇异性。在本文中,使用$ρ_{\ rm b} $的各种选择和$ρ_{\ rm tot} $的各种选择对$ v^{\ text {nad}} $中的奇异性存在,使用密度和kohn-sham电位的核CUSP条件。结果表明,没有奇异性是由平滑划分的地面kohn-sham密度产生的。我们使用分析反转来确认双原子测试系统上的数值计算Hehe,Heli $^+$和H $ _2 $,以获得局部密度近似值的数值精确$ v^{\ rm nad} $。我们检查了$ v^{\ rm nad} $的功能,该功能可用于开发和测试到$ v^{\ rm nad} [ρ_{\ rm b},ρ_{\ rm bt tot}] $和动力学 - 富度函数。
The non-additive kinetic potential $v^{\text{NAD}}$ is a key quantity in density-functional theory (DFT) embedding methods, such as frozen density embedding theory and partition DFT. $v^{\text{NAD}}$ is a bi-functional of electron densities $ρ_{\rm B}$ and $ρ_{\rm tot} = ρ_{\rm A} + ρ_{\rm B}$. It can be evaluated using approximate kinetic-energy functionals, but accurate approximations are challenging. The behavior of $v^{\text{NAD}}$ in the vicinity of the nuclei has long been questioned, and singularities were seen in some approximate calculations. In this article, the existence of singularities in $v^{\text{NAD}}$ is analyzed analytically for various choices of $ρ_{\rm B}$ and $ρ_{\rm tot}$, using the nuclear cusp conditions for the density and Kohn-Sham potential. It is shown that no singularities arise from smoothly partitioned ground-state Kohn-Sham densities. We confirm this result by numerical calculations on diatomic test systems HeHe, HeLi$^+$, and H$_2$, using analytical inversion to obtain a numerically exact $v^{\rm NAD}$ for the local density approximation. We examine features of $v^{\rm NAD}$ which can be used for development and testing of approximations to $v^{\rm NAD}[ρ_{\rm B},ρ_{\rm tot}]$ and kinetic-energy functionals.