论文标题
聪明的多租户联盟学习
Smart Multi-tenant Federated Learning
论文作者
论文摘要
联合学习(FL)是一种新兴的分布式机器学习方法,可在分散的边缘设备上赋予原位模型培训。但是,多个同时进行的培训活动可能会超载资源约束设备。在这项工作中,我们建议使用MUFL的智能多租户系统,以有效地协调和执行同时进行培训活动。我们首先正式化了多租户FL的问题,定义了多租户FL场景,并引入了一种香草多租户FL系统,该系统依次训练活动以形成基本线。然后,我们提出了两种优化多租户FL的方法:1)活动合并将培训活动合并为一个通过多任务结构的活动; 2)在训练巡回赛之后,通过在活动中采用亲和力来使小组中的活动具有更好的协同作用,将其分为小组。广泛的实验表明,MUFL的表现要优于其他方法,而消耗能量减少了40%。我们希望这项工作能够激发社区进一步学习和优化多租户FL。
Federated learning (FL) is an emerging distributed machine learning method that empowers in-situ model training on decentralized edge devices. However, multiple simultaneous training activities could overload resource-constrained devices. In this work, we propose a smart multi-tenant FL system, MuFL, to effectively coordinate and execute simultaneous training activities. We first formalize the problem of multi-tenant FL, define multi-tenant FL scenarios, and introduce a vanilla multi-tenant FL system that trains activities sequentially to form baselines. Then, we propose two approaches to optimize multi-tenant FL: 1) activity consolidation merges training activities into one activity with a multi-task architecture; 2) after training it for rounds, activity splitting divides it into groups by employing affinities among activities such that activities within a group have better synergy. Extensive experiments demonstrate that MuFL outperforms other methods while consuming 40% less energy. We hope this work will inspire the community to further study and optimize multi-tenant FL.