论文标题

社会不平等措施在预测某些物理系统模型中的关键或失败点方面的成功

Success of Social Inequality Measures in Predicting Critical or Failure Points in Some Models of Physical Systems

论文作者

Ghosh, Asim, Biswas, Soumyajyoti, Chakrabarti, Bikas K.

论文摘要

统计物理学家和社会科学家都在研究颗粒(或地点)和人口之间的能源,集群或雪崩大小的不平等,集群或雪崩大小,收入,财富等不平等分布的某些特征。虽然物理学家专注于最大(渗透)集群或雪崩的自相似(分形)结构(以及特征指数),但社会科学家研究了由洛伦兹(Lorenz)的非线性作用的不平等指数(例如Gini和Kolkata等)所赋予的不平等指数,代表了代表不同人群的累积级别的人群,而这些指数由不同的人群所拥有。我们在这里审查,使用早期出版物的结果以及一些新的数值和分析结果,上述社会不平等指标(从能源分布(在动力学交换模型中)中提取时,如何在临时型号或importient affers Offers Offiress Offers Offers Offers Onser中,在不平等的能源分布(在动力学交换模型中)(在percolation Models)或雪崩大小(在percolation模型中)如何。已经讨论了广泛的数值和一些分析结果。

Statistical physicists and social scientists both study extensively some characteristic features of the unequal distributions of energy, cluster or avalanche sizes and of income, wealth etc among the particles (or sites) and population respectively. While physicists concentrate on the self-similar (fractal) structure (and the characteristic exponents) of the largest (percolating) cluster or avalanche, social scientists study the inequality indices like Gini and Kolkata etc given by the non-linearity of the Lorenz function representing the cumulative fraction of the wealth possessed by different fraction of the population. We review here, using results from earlier publications and some new numerical as well as analytical results, how the above-mentioned social inequality indices, when extracted from the unequal distributions of energy (in kinetic exchange models), cluster sizes (in percolation models) or avalanche sizes (in self-organized critical or fiber bundle models) can help in a major way in providing precursor signals for an approaching critical point or imminent failure point. Extensive numerical and some analytical results have been discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源