论文标题

自然时间序列识别的行为和时间变化下的领域适应性

Domain Adaptation Under Behavioral and Temporal Shifts for Natural Time Series Mobile Activity Recognition

论文作者

Wilson, Garrett, Doppa, Janardhan Rao, Cook, Diane J.

论文摘要

人类行为越来越多地在移动设备上捕获,从而增加了对自动人类活动识别的兴趣。但是,现有数据集通常由脚本运动组成。我们的长期目标是在自然环境中执行移动活动识别。我们收集一个数据集,以使用与健康监测和干预等下游任务相关的活动类别来支持此目标。由于人类行为中存在巨大的差异,因此我们收集了两个不同年龄段的许多参与者的数据。由于人类行为会随着时间的流逝而改变,因此我们还在一个月的时间内收集参与者的数据以捕捉时间漂移。我们假设移动活动识别可以受益于无监督的域适应算法。为了满足这一需求并检验这一假设,我们分析了整个人和整个时间的域适应性的性能。然后,我们通过对比度学习来增强无监督的域适应性,并在可用标签比例时进行弱监督。该数据集可在https://github.com/wsu-casas/smartwatch-data上找到

Increasingly, human behavior is captured on mobile devices, leading to an increased interest in automated human activity recognition. However, existing datasets typically consist of scripted movements. Our long-term goal is to perform mobile activity recognition in natural settings. We collect a dataset to support this goal with activity categories that are relevant for downstream tasks such as health monitoring and intervention. Because of the large variations present in human behavior, we collect data from many participants across two different age groups. Because human behavior can change over time, we also collect data from participants over a month's time to capture the temporal drift. We hypothesize that mobile activity recognition can benefit from unsupervised domain adaptation algorithms. To address this need and test this hypothesis, we analyze the performance of domain adaptation across people and across time. We then enhance unsupervised domain adaptation with contrastive learning and with weak supervision when label proportions are available. The dataset is available at https://github.com/WSU-CASAS/smartwatch-data

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源