论文标题
部分可观测时空混沌系统的无模型预测
bloomRF: On Performing Range-Queries in Bloom-Filters with Piecewise-Monotone Hash Functions and Prefix Hashing
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We introduce bloomRF as a unified method for approximate membership testing that supports both point- and range-queries. As a first core idea, bloomRF introduces novel prefix hashing to efficiently encode range information in the hash-code of the key itself. As a second key concept, bloomRF proposes novel piecewise-monotone hash-functions that preserve local order and support fast range-lookups with fewer memory accesses. bloomRF has near-optimal space complexity and constant query complexity. Although, bloomRF is designed for integer domains, it supports floating-points, and can serve as a multi-attribute filter. The evaluation in RocksDB and in a standalone library shows that it is more efficient and outperforms existing point-range-filters by up to 4x across a range of settings and distributions, while keeping the false-positive rate low.