论文标题

部分可观测时空混沌系统的无模型预测

Strategic Voting in the Context of Stable-Matching of Teams

论文作者

Schmerler, Leora, Hazon, Noam, Kraus, Sarit

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the celebrated stable-matching problem, there are two sets of agents M and W, and the members of M only have preferences over the members of W and vice versa. It is usually assumed that each member of M and W is a single entity. However, there are many cases in which each member of M or W represents a team that consists of several individuals with common interests. For example, students may need to be matched to professors for their final projects, but each project is carried out by a team of students. Thus, the students first form teams, and the matching is between teams of students and professors. When a team is considered as an agent from M or W, it needs to have a preference order that represents it. A voting rule is a natural mechanism for aggregating the preferences of the team members into a single preference order. In this paper, we investigate the problem of strategic voting in the context of stable-matching of teams. Specifically, we assume that members of each team use the Borda rule for generating the preference order of the team. Then, the Gale-Shapley algorithm is used for finding a stable-matching, where the set M is the proposing side. We show that the single-voter manipulation problem can be solved in polynomial time, both when the team is from M and when it is from W. We show that the coalitional manipulation problem is computationally hard, but it can be solved approximately both when the team is from M and when it is from W.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源