论文标题
匹配设计中的协变量自适应随机推断
Covariate-adaptive randomization inference in matched designs
论文作者
论文摘要
通常,在匹配的观察性研究中进行因果推断是通过继续进行因果推断的,就好像匹配集中的治疗分配是随机分配的,并将此分布作为推理的基础。这种方法忽略了在匹配集中观察到的差异,这可能是对治疗的分布的影响,这是由于倾向分数内集差异而简洁地捕获的。我们通过协变量自适应随机化推断解决了这个问题,该推论将置换概率修改以随估计的倾向得分差异而变化,并避免要求排除匹配对或建模结果变量的要求。我们表明,当有大量样本可用于倾向分数估计时,该测试实现了I型错误控制任意接近名义级别。我们表征了新的随机测试的大样本行为,用于恒定添加效应的差异估计器。我们还表明,现有的灵敏度分析方法有效地推广到协变量自适应随机推断。最后,我们通过与传统的均匀推断进行比较,在具有倾向得分卡尺的匹配设计中比较了协变量自适应随机化程序的经验价值,并使用模拟和分析了手术患者中焊工和右导管的遗传损害进行回归调整。
It is common to conduct causal inference in matched observational studies by proceeding as though treatment assignments within matched sets are assigned uniformly at random and using this distribution as the basis for inference. This approach ignores observed discrepancies in matched sets that may be consequential for the distribution of treatment, which are succinctly captured by within-set differences in the propensity score. We address this problem via covariate-adaptive randomization inference, which modifies the permutation probabilities to vary with estimated propensity score discrepancies and avoids requirements to exclude matched pairs or model an outcome variable. We show that the test achieves type I error control arbitrarily close to the nominal level when large samples are available for propensity score estimation. We characterize the large-sample behavior of the new randomization test for a difference-in-means estimator of a constant additive effect. We also show that existing methods of sensitivity analysis generalize effectively to covariate-adaptive randomization inference. Finally, we evaluate the empirical value of covariate-adaptive randomization procedures via comparisons to traditional uniform inference in matched designs with and without propensity score calipers and regression adjustment using simulations and analyses of genetic damage among welders and right-heart catheterization in surgical patients.