论文标题
相互作用的准膜系统中的雪崩稳定性过渡
Avalanche stability transition in interacting quasiperiodic systems
论文作者
论文摘要
将1D的准二流相互作用系统耦合到马尔可夫浴场,我们在数值上研究许多身体局部阶段的雪崩不稳定,发现许多人体定位(MBL)在伪随机系统中比相应的随机无序系统更稳定。我们通过另外开发真实的空间RG参数来支持我们的结论,并从雪崩不稳定性的角度提供了Quasiperiodic和随机MBL之间的详细比较,从而得出结论,两者属于不同的普遍性类别。
Coupling a 1D quasiperiodic interacting system to a Markovian bath, we study the avalanche instability of the many body localized phase numerically, finding that many body localization (MBL) is more stable in pseudorandom quasiperiodic systems than the corresponding randomly disordered systems for a disorder strength $W>8$, potentially up to arbitrarily large system sizes. We support our conclusion by additionally developing real space RG arguments, and provide a detailed comparison between quasiperiodic and random MBL from the avalanche instability perspective, concluding that the two belong to different universality classes.