论文标题
基本长度尺度和重力场中的光的弯曲
Fundamental length scale and the bending of light in a gravitational field
论文作者
论文摘要
量化量子重力的规范方法被认为患有病理性非肾上腺素。但是,在有效的现场理论的背景下,可以一种可行的扰动方法来计算基本过程。一些非扰动方法,最著名的是循环量子重力和组合量子重力,这意味着存在最小的长度。为了规避最小长度的存在与特殊相对论原则之间的矛盾,双重相对论引入了修改后的分散关系,以调和冲突。在这项工作中,我们将这些分散关系与有效的现场理论方法结合在一起,以计算牛顿校正后的第一个校正,以通过大型对象弯曲光。该计算提供了可直接测量效应的前景,这既取决于量化的重力场的存在和最小长度。实验验证将提供存在量子理论的证据,以及对时空的基本量化,并在最小距离上结合。
The canonical approach to quantizing quantum gravity is understood to suffer from pathological non-renomalizability. Nevertheless in the context of effective field theory, a viable perturbative approach to calculating elementary processes is possible. Some non-perturbative approaches, most notably loop quantum gravity and combinatorial quantum gravity imply the existence of a minimal length. To circumvent the seeming contradiction between the existence of a minimum length and the principle of special relativity, Double Special Relativity introduces modified dispersion relationships that reconcile the conflict. In this work, we combine these dispersion relationships with an effective field theory approach to compute the first post Newtonian correction to the bending of light by a massive object. The calculation offers the prospect of a directly measurable effect that rests upon both the existence of a quantized gravitational field and a minimal length. Experimental verification would provide evidence of the existence of a quantum theory of gravity, and the fundamental quantization of spacetime with a bound on the minimal distance.