论文标题
工业中的机器学习安全:一项定量调查
Machine Learning Security in Industry: A Quantitative Survey
论文作者
论文摘要
尽管在机器学习安全方面进行了大量的学术工作,但对野外机器学习系统的攻击的发生知之甚少。在本文中,我们报告了139名工业从业人员的定量研究。我们分析攻击发生和关注,并评估影响影响威胁感知和暴露的因素的统计假设。我们的结果揭示了对部署的机器学习的现实攻击。在组织层面上,尽管我们没有发现样本中威胁暴露的预测因素,但实施防御量取决于面临威胁或预期可能成为目标的可能性。我们还提供了从业人员对单个机器学习攻击的相关性的答复,揭示了不可靠的决策,业务信息泄漏和偏见引入模型等复杂问题。最后,我们发现,在个人层面上,有关机器学习安全性的先验知识会影响威胁感知。我们的工作为实践中的对抗机器学习提供了更多的研究铺平了道路,但也有意见的是监管和审计的见解。
Despite the large body of academic work on machine learning security, little is known about the occurrence of attacks on machine learning systems in the wild. In this paper, we report on a quantitative study with 139 industrial practitioners. We analyze attack occurrence and concern and evaluate statistical hypotheses on factors influencing threat perception and exposure. Our results shed light on real-world attacks on deployed machine learning. On the organizational level, while we find no predictors for threat exposure in our sample, the amount of implement defenses depends on exposure to threats or expected likelihood to become a target. We also provide a detailed analysis of practitioners' replies on the relevance of individual machine learning attacks, unveiling complex concerns like unreliable decision making, business information leakage, and bias introduction into models. Finally, we find that on the individual level, prior knowledge about machine learning security influences threat perception. Our work paves the way for more research about adversarial machine learning in practice, but yields also insights for regulation and auditing.