论文标题

连续的分析能力和全态运动

Continuous analytic capacity and holomorphic motions

论文作者

Younsi, Malik

论文摘要

我们构建了一个紧凑的集合,其连续的分析能力在一定的全体形态运动下不会连续变化,从而回答了Paul Gauthier的问题。我们的示例灵感来自全体形态动力学,并依赖于主教的作品 - 卡莱森 - 加内特 - 琼斯和眉毛 - 与约旦曲线的切线,谐波测度和迪里奇莱特代数相关的wermer。我们的方法还提供了Ransford,Younsi和AI结果的新证明,涉及全体形态运动下的分析能力的变化。此外,我们表明可能不存在连续分析能力的极端功能。

We construct a compact set whose continuous analytic capacity does not vary continuously under a certain holomorphic motion, thereby answering a question of Paul Gauthier. Our example is inspired by holomorphic dynamics and relies on the works of Bishop--Carleson--Garnett--Jones and Browder--Wermer relating tangent points of Jordan curves, harmonic measure and Dirichlet algebras. Our approach also provides a new proof of a result of Ransford, Younsi and Ai on the variation of analytic capacity under holomorphic motions. In addition, we show that extremal functions for continuous analytic capacity may not exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源