论文标题

双向进化的多主体搜索对抗性强大的深度神经体系结构

Bi-fidelity Evolutionary Multiobjective Search for Adversarially Robust Deep Neural Architectures

论文作者

Liu, Jia, Cheng, Ran, Jin, Yaochu

论文摘要

已经发现深层神经网络容易受到对抗攻击的影响,从而引起了对安全敏感的环境的潜在关注。为了解决这个问题,最近的研究从建筑的角度研究了深神经网络的对抗性鲁棒性。但是,搜索深神经网络的体系结构在计算上是昂贵的,尤其是当与对抗性训练过程相结合时。为了应对上述挑战,本文提出了双重主体神经体系结构搜索方法。首先,我们制定了NAS问题,以增强深层神经网络的对抗性鲁棒性为多目标优化问题。具体而言,除了低保真绩效预测器作为第一个目标外,我们还利用辅助目标 - 其值是替代模型的输出,该替代模型接受了高保真评估。其次,我们通过结合三种性能估计方法,即参数共享,低保真评估和基于替代的预测指标来降低计算成本。在CIFAR-10,CIFAR-100和SVHN数据集上进行的广泛实验证实了所提出方法的有效性。

Deep neural networks have been found vulnerable to adversarial attacks, thus raising potentially concerns in security-sensitive contexts. To address this problem, recent research has investigated the adversarial robustness of deep neural networks from the architectural point of view. However, searching for architectures of deep neural networks is computationally expensive, particularly when coupled with adversarial training process. To meet the above challenge, this paper proposes a bi-fidelity multiobjective neural architecture search approach. First, we formulate the NAS problem for enhancing adversarial robustness of deep neural networks into a multiobjective optimization problem. Specifically, in addition to a low-fidelity performance predictor as the first objective, we leverage an auxiliary-objective -- the value of which is the output of a surrogate model trained with high-fidelity evaluations. Secondly, we reduce the computational cost by combining three performance estimation methods, i.e., parameter sharing, low-fidelity evaluation, and surrogate-based predictor. The effectiveness of the proposed approach is confirmed by extensive experiments conducted on CIFAR-10, CIFAR-100 and SVHN datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源