论文标题

机器人检测到水下多人类机器人合作的人类可读的手势语言

Robotic Detection of a Human-Comprehensible Gestural Language for Underwater Multi-Human-Robot Collaboration

论文作者

Enan, Sadman Sakib, Fulton, Michael, Sattar, Junaed

论文摘要

在本文中,我们提出了一个基于运动的机器人通信框架,该框架能够在自动水下车辆(AUV)和人类潜水员之间进行非语言交流。我们为AUV到AUV通信设计一种手势语言,可以通过观察对话的潜水员可以轻松理解与典型的射频,光或基于音频的AUV通信来理解。为了让AUV在视觉上了解另一个AUV的手势,我们提出了一个深层网络(RRCommnet),该网络利用了自我发挥的机制来学会通过提取最大歧视性时空特征来学会识别每个消息。我们将该网络训练该网络,以各种模拟和现实世界的数据进行训练。在模拟和封闭水机器人试验中,我们的实验评估表明,所提出的RRCommnet体系结构能够在模拟数据上平均准确性为88-94%,在真实数据上的平均准确性为88-94%(取决于使用的模型版本)。此外,通过与人参与者进行消息转录研究,我们还表明,人类可以理解所提出的语言,总体转录精度为88%。最后,我们讨论了嵌入式GPU硬件上RRCommnet的推理运行时,以便在现场的AUV上实时使用。

In this paper, we present a motion-based robotic communication framework that enables non-verbal communication among autonomous underwater vehicles (AUVs) and human divers. We design a gestural language for AUV-to-AUV communication which can be easily understood by divers observing the conversation unlike typical radio frequency, light, or audio based AUV communication. To allow AUVs to visually understand a gesture from another AUV, we propose a deep network (RRCommNet) which exploits a self-attention mechanism to learn to recognize each message by extracting maximally discriminative spatio-temporal features. We train this network on diverse simulated and real-world data. Our experimental evaluations, both in simulation and in closed-water robot trials, demonstrate that the proposed RRCommNet architecture is able to decipher gesture-based messages with an average accuracy of 88-94% on simulated data, 73-83% on real data (depending on the version of the model used). Further, by performing a message transcription study with human participants, we also show that the proposed language can be understood by humans, with an overall transcription accuracy of 88%. Finally, we discuss the inference runtime of RRCommNet on embedded GPU hardware, for real-time use on board AUVs in the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源