论文标题
想法:通过在线多标签识别视力语言预培训来增加文本多样性
IDEA: Increasing Text Diversity via Online Multi-Label Recognition for Vision-Language Pre-training
论文作者
论文摘要
具有大规模图像文本对的视觉预训练(VLP)在各个领域都表现出卓越的性能。但是,Internet上的图像文本对共存通常缺乏明确的对齐信息,这对于VLP来说是次优的。建议采用现成的对象检测器来利用其他图像标签信息。但是,对象检测器是耗时的,只能识别预定义的对象类别,从而限制了模型容量。受到观察的启发,即文本包含不完整的细粒图像信息,我们介绍了Ideas,该想法代表通过在线多标签识别VLP来增加文本多样性。想法表明,可以在VLP期间共同优化从文本中提取的图像标签的多标签学习。此外,想法可以在线识别有价值的图像标签,以提供更明确的文字监督。全面的实验表明,想法可以显着提高多个下游数据集上的性能,并具有较小的额外计算成本。
Vision-Language Pre-training (VLP) with large-scale image-text pairs has demonstrated superior performance in various fields. However, the image-text pairs co-occurrent on the Internet typically lack explicit alignment information, which is suboptimal for VLP. Existing methods proposed to adopt an off-the-shelf object detector to utilize additional image tag information. However, the object detector is time-consuming and can only identify the pre-defined object categories, limiting the model capacity. Inspired by the observation that the texts incorporate incomplete fine-grained image information, we introduce IDEA, which stands for increasing text diversity via online multi-label recognition for VLP. IDEA shows that multi-label learning with image tags extracted from the texts can be jointly optimized during VLP. Moreover, IDEA can identify valuable image tags online to provide more explicit textual supervision. Comprehensive experiments demonstrate that IDEA can significantly boost the performance on multiple downstream datasets with a small extra computational cost.