论文标题

脑启发的图形尖峰神经网络用于常识性知识表示和推理

Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge Representation and Reasoning

论文作者

Fang, Hongjian, Zeng, Yi, Tang, Jianbo, Wang, Yuwei, Liang, Yao, Liu, Xin

论文摘要

人脑中的神经网络如何代表常识性知识,而完整的相关推理任务是神经科学,认知科学,心理学和人工智能的重要研究主题。尽管使用固定长度向量代表符号的传统人工神经网络在某些特定任务中取得了良好的表现,但它仍然是一个黑匣子,缺乏可解释性,远非人类对世界的看法。这项工作受到神经科学中祖母细胞假设的启发,研究了编码和峰值定时依赖性可塑性(STDP)机制的启发,可以集成到尖峰神经网络的学习中,以及神经元的群体如何通过指导符号来指导不同神经元之间的sequential火灾来表示符号。不同社区的神经元种群共同构成了整个常识知识图,形成了巨大的图形尖峰神经网络。此外,我们引入了奖励调制的峰值时间依赖性可塑性(R-STDP)机制,以模拟生物增强学习过程并相应地完成相关推理任务,比图形卷积人工神经网络实现了可比的准确性和更快的收敛速度。对于神经科学和认知科学领域,本文的工作为进一步探索人脑代表常识知识的方式提供了计算建模的基础。对于人工智能领域,本文通过构建常识性知识表示并推理具有固体生物学合理性的尖峰神经网络,指出了实现更健壮和可解释的神经网络的探索方向。

How neural networks in the human brain represent commonsense knowledge, and complete related reasoning tasks is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence. Although the traditional artificial neural network using fixed-length vectors to represent symbols has gained good performance in some specific tasks, it is still a black box that lacks interpretability, far from how humans perceive the world. Inspired by the grandmother-cell hypothesis in neuroscience, this work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks, and how a population of neurons can represent a symbol via guiding the completion of sequential firing between different neuron populations. The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network. Moreover, we introduced the Reward-modulated spiking timing-dependent plasticity (R-STDP) mechanism to simulate the biological reinforcement learning process and completed the related reasoning tasks accordingly, achieving comparable accuracy and faster convergence speed than the graph convolutional artificial neural networks. For the fields of neuroscience and cognitive science, the work in this paper provided the foundation of computational modeling for further exploration of the way the human brain represents commonsense knowledge. For the field of artificial intelligence, this paper indicated the exploration direction for realizing a more robust and interpretable neural network by constructing a commonsense knowledge representation and reasoning spiking neural networks with solid biological plausibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源