论文标题

Cosmicnet II:具有高效且准确的神经网络模拟扩展的宇宙学

CosmicNet II: Emulating extended cosmologies with efficient and accurate neural networks

论文作者

Günther, Sven, Lesgourgues, Julien, Samaras, Georgios, Schöneberg, Nils, Stadtmann, Florian, Fidler, Christian, Torrado, Jesús

论文摘要

在现代分析管道中,爱因斯坦 - 波尔兹曼求解器(EBSS)是获得CMB和物质功率谱的宝贵工具。为了加速这些可观察物的计算,宇宙策略是替换EB的瓶颈,这是通过神经网络的线性宇宙学扰动的微分方程系统的整合。与最终可观察物的直接仿真相比,该策略具有优势,包括易于在高维参数空间中训练的小型网络,并且不依赖于原始光谱参数或与观察相关的数量(例如选择功能)。在第二张Cosmicnet论文中,我们提供了一组更有效的网络集,这些网络已经经过了LCDM以外的扩展宇宙学训练,具有大量的中微子,额外的相对论自由度,空间曲率和动力学深色能量。我们发布了类代码的新分支,称为ClassNet,该分支自动使用信任准确性区域内的网络。我们通过使用ClassNet和Cobaya推理软件包执行的Planck,Bao和Supernovae Data的参数推理来证明ClassNet的准确性和性能。我们已经消除了扰动模块作为EB的瓶颈,其加速度在扩展宇宙学中更为显着,在这种宇宙学中,通常的方法将更昂贵,而网络的性能保持不变。对于仿真的类扰动模块,我们获得了150顺序的加速系数。对于整个代码,当计算CMB谐波光谱时(现在由高度可行的和更优化的视角集成主导)时,这将转化为第3阶的总体加速因素,并且在计算物质功率光谱时(即使在扩展的宇宙学中,也小于0.1秒)。

In modern analysis pipelines, Einstein-Boltzmann Solvers (EBSs) are an invaluable tool for obtaining CMB and matter power spectra. To accelerate the computation of these observables, the CosmicNet strategy is to replace the bottleneck of an EBS, which is the integration of a system of differential equations for linear cosmological perturbations, by neural networks. This strategy offers advantages compared to the direct emulation of the final observables, including small networks that are easy to train in high-dimensional parameter spaces, and which do not depend by on primordial spectrum parameters nor observation-related quantities such as selection functions. In this second CosmicNet paper, we present a more efficient set of networks that are already trained for extended cosmologies beyond LCDM, with massive neutrinos, extra relativistic degrees of freedom, spatial curvature, and dynamical dark energy. We release a new branch of the CLASS code, called CLASSNET, which automatically uses networks within a region of trusted accuracy. We demonstrate the accuracy and performance of CLASSNET by presenting parameter inference runs from Planck, BAO and supernovae data, performed with CLASSNET and the COBAYA inference package. We have eliminated the perturbation module as a bottleneck of the EBS, with a speedup that is even more remarkable in extended cosmologies, where the usual approach would have been more expensive while the network's performance remains the same. We obtain a speedup factor of order 150 for the emulated perturbation module of CLASS. For the whole code, this translates into an overall speedup factor of order 3 when computing CMB harmonic spectra (now dominated by the highly parallelizable and further optimizable line-of-sight integration), and of order 50 when computing matter power spectra (less than 0.1 seconds even in extended cosmologies).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源