论文标题
一种新的量子后非脱糖性方法
A New Approach to Post-Quantum Non-Malleability
论文作者
论文摘要
我们提供了第一个$ \ Mathit {constant} $ - $ \ MATHIT {round} $在最小假设的假设是$ \ Mathit {post} $ - $ \ $ \ mathit {量子{量子} $ $ $ \ $ \ mathit {One} $ - $ \ $ \ $ \ mathit} $ {我们就承诺实现了非脱糖性的标准概念。先前的构造需要$ω(\ log^*λ)$ roughs在相同的假设下。 我们通过一种新的技术来实现恒定的不易差不多承诺的新技术,该技术更易于在量词后环境中使用。该技术还为经典环境中恒定的不宽恕承诺提供了几乎基本的安全证明,这可能具有独立的兴趣。 当与现有工作结合使用时,我们的结果会产生第一个恒定的量子量子安全计算,用于经典和量子功能$ \ Mathit {in} $ $ $ \ $ \ MATHIT {} $ $ $ \ MATHIT {PLAIN} $ \ MATHIT} $ \ MATHIT} $ \ MATHIT {MATHIT {型号} $,在$ \ MATHIT n Quantnits {Mathit formatim {polynomial} $ notim and Notmph and Notim and Notim and Notium witters witterns错误。
We provide the first $\mathit{constant}$-$\mathit{round}$ construction of post-quantum non-malleable commitments under the minimal assumption that $\mathit{post}$-$\mathit{quantum}$ $\mathit{one}$-$\mathit{way}$ $\mathit{functions}$ exist. We achieve the standard notion of non-malleability with respect to commitments. Prior constructions required $Ω(\log^*λ)$ rounds under the same assumption. We achieve our results through a new technique for constant-round non-malleable commitments which is easier to use in the post-quantum setting. The technique also yields an almost elementary proof of security for constant-round non-malleable commitments in the classical setting, which may be of independent interest. When combined with existing work, our results yield the first constant-round quantum-secure multiparty computation for both classical and quantum functionalities $\mathit{in}$ $\mathit{the}$ $\mathit{plain}$ $\mathit{model}$, under the $\mathit{polynomial}$ hardness of quantum fully-homomorphic encryption and quantum learning with errors.