论文标题
反向差异和几乎零和星星
Reverse discrepancy and almost zero-sum stars
论文作者
论文摘要
对于从$ \ { - 1,1 \} $中选择的$ f $ - 在超graph $ \ mathcal {h} =(v,e)$的边缘上带有$ \ sum_ {e \ in e} f(e} f(e)f(e)= 0 $,一个很大可以使$ \ \米\ n v \ n v \ y \ e \ e \ y \ e \ y \ y \ y \ y \ y \ y \ y \ y \这个问题可能被视为超图形差异问题的反向版本,也可以视为对恒星的零和拉姆西问题的放松。当$ \ Mathcal {H} $是完整或均衡的超图时,我们证明了确切的结果。
For $f$ chosen from the $\{-1,1\}$-valued functions on the edges of a hypergraph $\mathcal{H} = (V,E)$ with $\sum_{e \in E} f(e) = 0$, how large can one make $\min_{v \in V} |\sum_{e \ni v} f(e)|$? This question may be viewed as a reverse version of the hypergraph discrepancy problem or as a relaxation of the zero-sum Ramsey problem for stars. We prove exact results when $\mathcal{H}$ is a complete or equipartite hypergraph.