论文标题

2.5维反问题的快速数值集成技术

Fast Numerical Integration Techniques for 2.5-Dimensional Inverse Problems

论文作者

Hidayetoglu, Mert, Oelze, Michael, Kudeki, Erhan, Chew, Weng Cho

论文摘要

涉及微波和超声波的逆散射需要非线性优化问题的数值解。为了减轻整个三维(3-D)逆问题的计算负担,通常将物体近似为二维(2-D),并通过二维散射模式的傅立叶整合来将对象近似为二维(2-D),并将发射器传感器视为3-D。所得积分是奇异的,因此需要大量的集成点,其中每个点对应于2-D溶液。为了降低计算复杂性,本文提出了一组转换的快速整合方法。我们将对象建模为2-D,但传输和接收器对为3-D;因此,我们将解决方案称为2.5-D逆问题。收敛结果表明,所提出的集成技术具有指数收敛,因此具有降低的计算复杂性,以计算2.5-D Green的功能以解决反向散射问题。

Inverse scattering involving microwave and ultrasound waves require numerical solution of nonlinear optimization problem. To alleviate the computational burden of a full three-dimensional (3-D) inverse problem, it is a common practice to approximate the object as two-dimensional (2-D) and treat the transmitter and receiver sensors as 3-D, through a Fourier integration of 2-D modes of scattering. The resulting integral is singular, and hence requires a prohibitively large number of integration points, where each point corresponds to a 2-D solution. To reduce the computational complexity, this paper proposes fast integration approaches by a set of transformations. We model the object in 2-D but the transmit and receiver pairs as 3-D; hence, we term the solution as a 2.5-D inverse problem. Convergence results indicate that the proposed integration techniques have exponential convergence and hence have a reduces the computational complexity to compute 2.5-D Green's function to solve inverse scattering problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源