论文标题
快速人员通过子空间一致性重新识别
Rapid Person Re-Identification via Sub-space Consistency Regularization
论文作者
论文摘要
人重新识别(REID)与跨不同相机的行人相匹配。采用真实功能描述符的现有REID方法的准确性很高,但是由于缓慢的欧几里得距离计算以及复杂的快速算法,它们的效率很低。最近,一些作品建议生产二进制编码的人描述符,而这些描述符仅需要快速锤击距离计算和简单的计数算法。但是,考虑到稀疏的二进制空间,这种二进制编码的描述符的性能,尤其是使用简短的代码(例如32位和64位)。为了在模型的准确性和效率之间取得平衡,我们提出了一种新型的子空间一致性正则化(SCR)算法,该算法可以比在相同的维度下的真实价值功能,同时保持竞争精度,尤其是在简短的代码下,可以将REID程序加快$ 0.25 $倍的速度。 SCR转换实价特征向量(例如,2048 Float32),带有简短的二进制代码(例如64位),首先将房地产品向量向量向量矢量分为$ m $子空间,每个vetote vetor vector vector vector vector vector vector vector vector vetorment velets vetorment vetorment velets。因此,两个样品之间的距离可以表示为与质心相应距离的总和,可以通过离线计算加速并通过查找表维护。另一方面,与使用二进制代码相比,这些真实价值的质心有助于实现明显更高的准确性。最后,我们将距离查找表转换为整数,并应用计数算法以加快排名阶段。 我们还提出了一个具有迭代框架的新型一致性正则化。 Market-1501和Dukemtmc-Reid的实验结果显示出令人鼓舞和令人兴奋的结果。在简短的代码下,我们拟议的SCR享有真实价值的准确性和哈希级速度。
Person Re-Identification (ReID) matches pedestrians across disjoint cameras. Existing ReID methods adopting real-value feature descriptors have achieved high accuracy, but they are low in efficiency due to the slow Euclidean distance computation as well as complex quick-sort algorithms. Recently, some works propose to yield binary encoded person descriptors which instead only require fast Hamming distance computation and simple counting-sort algorithms. However, the performances of such binary encoded descriptors, especially with short code (e.g., 32 and 64 bits), are hardly satisfactory given the sparse binary space. To strike a balance between the model accuracy and efficiency, we propose a novel Sub-space Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by $0.25$ times than real-value features under the same dimensions whilst maintaining a competitive accuracy, especially under short codes. SCR transforms real-value features vector (e.g., 2048 float32) with short binary codes (e.g., 64 bits) by first dividing real-value features vector into $M$ sub-spaces, each with $C$ clustered centroids. Thus the distance between two samples can be expressed as the summation of the respective distance to the centroids, which can be sped up by offline calculation and maintained via a look-up table. On the other side, these real-value centroids help to achieve significantly higher accuracy than using binary code. Lastly, we convert the distance look-up table to be integer and apply the counting-sort algorithm to speed up the ranking stage. We also propose a novel consistency regularization with an iterative framework. Experimental results on Market-1501 and DukeMTMC-reID show promising and exciting results. Under short code, our proposed SCR enjoys Real-value-level accuracy and Hashing-level speed.