论文标题

分布式Shor的算法

Distributed Shor's algorithm

论文作者

Xiao, Ligang, Qiu, Daowen, Luo, Le, Mateus, Paulo

论文摘要

Shor的算法是Peter Shor提出的最重要的量子算法之一[第35届计算机科学基础年度研讨会论文集,1994年,第124---134页]。 Shor的算法可以将一个大整数以一定的概率为主,并且在输入整数的长度上花费了多项式时间。 Shor算法的关键步骤是订购算法。具体来说,给定$ l $ - 位整数$ n $,我们首先随机选择一个带有$ gcd(a,n)= 1 $的整数$ a $,$ a $ a $ modulo $ n $的订单是最小的正整数$ r $,因此$ a^r \ equiv 1(\ bmod n)$。 Shor的算法中的订单调查算法首先使用量子操作来获得$ \ dfrac {s} {r} {r} $的估计,用于某些$ s \ in \ {0,1,\ cdots,r-1 \} $,然后通过经典的Algorithms获得$ r $。在本文中,我们提出了分布式的Shor算法。我们的分布式算法与传统的订购算法之间的区别在于,我们分别使用两台量子计算机来估计某些$ s \ in \ in \ in \ in \ {0,1,\ cdots,\ cdots,r-1 \} $的$ \ dfrac {s} {r} $的部分位。为了确保其测量结果对应于相同的$ \ dfrac {s} {r} $,我们需要使用量子传送。我们通过经典后处理整合了测量结果。之后,我们获得了高精度的估计$ \ dfrac {s} {r} $。与使用多个控制量子位的传统Shor的算法相比,我们的算法降低了几乎$ \ dfrac {l} {2} {2} $ QUBITS,并减少了每台计算机的电路深度。

Shor's algorithm is one of the most important quantum algorithm proposed by Peter Shor [Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124--134]. Shor's algorithm can factor a large integer with certain probability and costs polynomial time in the length of the input integer. The key step of Shor's algorithm is the order-finding algorithm. Specifically, given an $L$-bit integer $N$, we first randomly pick an integer $a$ with $gcd(a,N)=1$, the order of $a$ modulo $N$ is the smallest positive integer $r$ such that $a^r\equiv 1 (\bmod N)$. The order-finding algorithm in Shor's algorithm first uses quantum operations to obtain an estimation of $\dfrac{s}{r}$ for some $s\in\{0, 1, \cdots, r-1\}$, then $r$ is obtained by means of classical algorithms. In this paper, we propose a distributed Shor's algorithm. The difference between our distributed algorithm and the traditional order-finding algorithm is that we use two quantum computers separately to estimate partial bits of $\dfrac{s}{r}$ for some $s\in\{0, 1, \cdots, r-1\}$. To ensure their measuring results correspond to the same $\dfrac{s}{r}$, we need employ quantum teleportation. We integrate the measuring results via classical post-processing. After that, we get an estimation of $\dfrac{s}{r}$ with high precision. Compared with the traditional Shor's algorithm that uses multiple controlling qubits, our algorithm reduces nearly $\dfrac{L}{2}$ qubits and reduces the circuit depth of each computer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源