论文标题
安全线性MDS编码矩阵反转
Secure Linear MDS Coded Matrix Inversion
论文作者
论文摘要
在许多科学领域的操作繁琐,正在颠倒大型的全等级矩阵。在本文中,我们提出了一种用于恢复矩阵逆近似值的编码计算方法。我们首先提出了一个近似矩阵反转算法,该算法不需要矩阵分解,但使用黑盒最小二乘优化求解器作为子例程,以估算真实全序矩阵的倒数。然后,我们提出了一个分布式框架,可以为其实现算法,并展示如何利用最高平衡的MDS生成器矩阵来设计矩阵反转编码计算方案。我们专注于平衡的芦苇 - 固体代码,这些代码在计算负载方面是最佳的。以及从工人到主服务器的通信。我们还讨论了如何使用算法来计算全级矩阵的伪内,以及如何从窃听器中获得通信。
A cumbersome operation in many scientific fields, is inverting large full-rank matrices. In this paper, we propose a coded computing approach for recovering matrix inverse approximations. We first present an approximate matrix inversion algorithm which does not require a matrix factorization, but uses a black-box least squares optimization solver as a subroutine, to give an estimate of the inverse of a real full-rank matrix. We then present a distributed framework for which our algorithm can be implemented, and show how we can leverage sparsest-balanced MDS generator matrices to devise matrix inversion coded computing schemes. We focus on balanced Reed-Solomon codes, which are optimal in terms of computational load; and communication from the workers to the master server. We also discuss how our algorithms can be used to compute the pseudoinverse of a full-rank matrix, and how the communication is secured from eavesdroppers.