论文标题

与时间注意网络的患者旅程数据中的长期依赖关系和短期相关性建模以进行健康预测

Modeling Long-term Dependencies and Short-term Correlations in Patient Journey Data with Temporal Attention Networks for Health Prediction

论文作者

Liu, Yuxi, Zhang, Zhenhao, Yepes, Antonio Jimeno, Salim, Flora D.

论文摘要

基于电子健康记录(EHR)的健康预测建立模型已成为一个活跃的研究领域。 EHR患者旅程数据由患者定期的临床事件/患者访问组成。大多数现有的研究着重于对访问之间的长期依赖性进行建模,而无需在连续访问之间明确考虑短期相关性,在这些访问之间,将不规则的时间间隔(并入为辅助信息)被送入健康预测模型中,以捕获患者旅行的潜在渐进模式。我们提出了一个具有四个模块的新型深度神经网络,以考虑各种变量对健康预测的贡献:i)堆叠的注意力模块增强了每个患者旅程中临床事件中的深层语义,并产生访问的嵌入式嵌入,ii)短期关注模块模块在范围内的短期访问范围内的短期访问范围内的范围内范围内的范围内的范围内的范围内段II范围内的范围内的范围内的范围II范围内的范围内部互动II,模型在访问嵌入之间的长期依赖性模型,同时捕获这些访问嵌入的时间间隔的影响,iv),最后,耦合的注意模块可以适应地汇总短期时间关注和长期时间关注模块的输出,以做出健康预测。与现有的最新方法相比,模拟于III的实验结果表明,我们模型的预测精度具有较高的预测精度,以及这种方法的可解释性和鲁棒性。此外,我们发现建模短期相关性有助于局部先验的产生,从而改善了患者旅行的预测性建模。

Building models for health prediction based on Electronic Health Records (EHR) has become an active research area. EHR patient journey data consists of patient time-ordered clinical events/visits from patients. Most existing studies focus on modeling long-term dependencies between visits, without explicitly taking short-term correlations between consecutive visits into account, where irregular time intervals, incorporated as auxiliary information, are fed into health prediction models to capture latent progressive patterns of patient journeys. We present a novel deep neural network with four modules to take into account the contributions of various variables for health prediction: i) the Stacked Attention module strengthens the deep semantics in clinical events within each patient journey and generates visit embeddings, ii) the Short-Term Temporal Attention module models short-term correlations between consecutive visit embeddings while capturing the impact of time intervals within those visit embeddings, iii) the Long-Term Temporal Attention module models long-term dependencies between visit embeddings while capturing the impact of time intervals within those visit embeddings, iv) and finally, the Coupled Attention module adaptively aggregates the outputs of Short-Term Temporal Attention and Long-Term Temporal Attention modules to make health predictions. Experimental results on MIMIC-III demonstrate superior predictive accuracy of our model compared to existing state-of-the-art methods, as well as the interpretability and robustness of this approach. Furthermore, we found that modeling short-term correlations contributes to local priors generation, leading to improved predictive modeling of patient journeys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源