论文标题
Jahn-Teller状态通过电磁场中的自旋轨道耦合混合
Jahn-Teller states mixed by spin-orbit coupling in an electromagnetic field
论文作者
论文摘要
自旋轨道耦合在凝结物理学中起关键作用。例如,自旋轨道相互作用会影响固体中的磁化和传输动力学,而旋转和动量则锁定在拓扑问题上。另外,自旋轨道纠缠可能在外来现象中起重要作用,例如4D和5D系统中的量子自旋液体。一个有趣的问题是,通过自旋轨道偶联的电子状态如何与电磁场相互作用,这可能具有调整其性能并揭示有趣的物理学的潜力。由于我们最近在一些Jahn-Teller锰矿中发现了大型陀螺仪信号的动机,在这里,我们探索了在D4过渡金属中光线与旋转状态的相互作用。我们表明,自旋轨道混合可以实现对圆极化光敏感的电子跃迁,从而产生陀螺反应,随着自旋轨道耦合而增加。有趣的是,涉及自旋逆转的光激发过渡是这种旋转共振的背后。此外,我们发现与电磁场的相互作用在很大程度上取决于光传播相对于Jahn Teller畸变和自旋量化的相对方向。我们建议这种相互作用为使用光波长的电磁波来纠缠轨道和自旋自由度提供了机会。我们的方法包括对自旋轨道耦合的组理论处理,具有广泛的适用性,并提供了一种多功能工具,可以探索具有任意自旋轨道耦合强度和点组对称性的过渡金属中电磁场与电子状态的相互作用。
Spin-orbit coupling plays a pivotal role in condensed matter physics. For instance, spin-orbit interactions affect the magnetization and transport dynamics in solids, while spins and momenta are locked in topological matter. Alternatively, spin-orbit entanglement may play an important role in exotic phenomena, like quantum spin liquids in 4d and 5d systems. An interesting question is how electronic states mixed by spin orbit coupling interact with electromagnetic fields, which may hold potential to tune their properties and reveal interesting physics. Motivated by our recent discovery of large gyrotropic signals in some Jahn-Teller manganites, here we explore the interaction of light with spin-mixed states in a d4 transition metal. We show that spin-orbit mixing enables electronic transitions that are sensitive to circularly polarized light, giving rise to a gyrotropic response that increases with spin-orbit coupling. Interestingly, photoexcited transitions that involve spin reversal are behind such gyrotropic resonances. Additionally, we find that the interaction with the electromagnetic field depends strongly on the relative orientation of the propagation of light with respect to Jahn-Teller distortions and spin quantization. We suggest that such interactions offer the opportunity to use electromagnetic waves at optical wavelengths to entangle orbital and spin degrees of freedom. Our approach, which includes a group-theoretical treatment of spin-orbit coupling, has wide applicability and provides a versatile tool to explore the interaction of electromagnetic fields with electronic states in transition metals with arbitrary spin-orbit coupling strength and pointgroup symmetries.