论文标题
使用强化学习安排覆盖外的车辆通信
Scheduling Out-of-Coverage Vehicular Communications Using Reinforcement Learning
论文作者
论文摘要
车辆到车辆(V2V)通信的性能在很大程度上取决于采用的调度方法。虽然集中式网络调度程序提供高V2V通信可靠性,但其操作通常仅限于具有完整的蜂窝网络覆盖范围的区域。相比之下,在细胞外覆盖区域中,使用了相对低效的分布式无线电资源管理。为了利用集中式方法的好处,可以提高缺乏蜂窝覆盖的道路上V2V通信的可靠性,我们提出了一个集中的调度程序VRL(车辆增强增强学习调度程序),这是一种集中的调度程序,主动为覆盖外的V2V Communications vextit \ TextIt {之前的TextIt {之前} Vehicle提供了蜂窝网络的覆盖率。通过在模拟的车辆环境中进行培训,VRL可以学习一项适应环境变化的调度策略,从而消除了在复杂的现实生活环境中对有针对性(重新)培训的需求。我们评估了在不同的移动性,网络负载,无线通道和资源配置下VRL的性能。 VRL的表现优于最先进的区域分布式调度算法,而无需蜂窝网络覆盖的区域,通过在高负载条件下将数据包错误率降低了一半,并在低负载方案中实现了接近最大的可靠性。
Performance of vehicle-to-vehicle (V2V) communications depends highly on the employed scheduling approach. While centralized network schedulers offer high V2V communication reliability, their operation is conventionally restricted to areas with full cellular network coverage. In contrast, in out-of-cellular-coverage areas, comparatively inefficient distributed radio resource management is used. To exploit the benefits of the centralized approach for enhancing the reliability of V2V communications on roads lacking cellular coverage, we propose VRLS (Vehicular Reinforcement Learning Scheduler), a centralized scheduler that proactively assigns resources for out-of-coverage V2V communications \textit{before} vehicles leave the cellular network coverage. By training in simulated vehicular environments, VRLS can learn a scheduling policy that is robust and adaptable to environmental changes, thus eliminating the need for targeted (re-)training in complex real-life environments. We evaluate the performance of VRLS under varying mobility, network load, wireless channel, and resource configurations. VRLS outperforms the state-of-the-art distributed scheduling algorithm in zones without cellular network coverage by reducing the packet error rate by half in highly loaded conditions and achieving near-maximum reliability in low-load scenarios.