论文标题

通过定位提高边际近似无可能推断的准确性

Improving the Accuracy of Marginal Approximations in Likelihood-Free Inference via Localisation

论文作者

Drovandi, Christopher, Nott, David J, Frazier, David T

论文摘要

无似然方法是可以通过模拟的隐式模型执行推断的必不可少的工具,但相应的可能性是棘手的。但是,常见的无可能方法不能很好地扩展到大量模型参数。一种有前途的无可能推理的有前途的方法涉及通过仅根据被认为对低维成分的摘要统计数据进行调节来估计低维边缘后期,然后在某种程度上结合了低维近似值。在本文中,我们证明,对于看似直观的汇总统计选择,这种低维近似值可能是令人惊讶的差。我们描述了一个理想化的低维汇总统计量,原则上适用于边际估计。但是,在实践中,很难对理想选择的直接近似。因此,我们提出了一种替代的边际估计方法,该方法更容易实施和自动化。鉴于最初选择的低维摘要统计量可能只对边缘后验位置有用,因此,使用所有摘要统计数据,新方法通过首先粗略地将后近似值来提高性能,以确保全局可识别性,然后使用低维度的低维统计量进行精确的低维近似统计量。我们表明,该方法的后部可以分别基于低维和完整的摘要统计数据将其表示为后验分布的对数库。在几个示例中说明了我们方法的良好性能。

Likelihood-free methods are an essential tool for performing inference for implicit models which can be simulated from, but for which the corresponding likelihood is intractable. However, common likelihood-free methods do not scale well to a large number of model parameters. A promising approach to high-dimensional likelihood-free inference involves estimating low-dimensional marginal posteriors by conditioning only on summary statistics believed to be informative for the low-dimensional component, and then combining the low-dimensional approximations in some way. In this paper, we demonstrate that such low-dimensional approximations can be surprisingly poor in practice for seemingly intuitive summary statistic choices. We describe an idealized low-dimensional summary statistic that is, in principle, suitable for marginal estimation. However, a direct approximation of the idealized choice is difficult in practice. We thus suggest an alternative approach to marginal estimation which is easier to implement and automate. Given an initial choice of low-dimensional summary statistic that might only be informative about a marginal posterior location, the new method improves performance by first crudely localising the posterior approximation using all the summary statistics to ensure global identifiability, followed by a second step that hones in on an accurate low-dimensional approximation using the low-dimensional summary statistic. We show that the posterior this approach targets can be represented as a logarithmic pool of posterior distributions based on the low-dimensional and full summary statistics, respectively. The good performance of our method is illustrated in several examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源