论文标题

使用图形卷积网络的金色无参考硬件特洛伊

Golden Reference-Free Hardware Trojan Localization using Graph Convolutional Network

论文作者

Yasaei, Rozhin, Faezi, Sina, Faruque, Mohammad Abdullah Al

论文摘要

综合电路(IC)供应链的全球化已将大部分设计,制造和测试过程从单一的受信任实体转移到全球各种不信任的第三方实体。使用不信任的第三方知识产权(3PIP)的风险是,对手可能会插入称为硬件木马(HTS)的恶意修改。这些HT可以损害完整性,恶化性能,拒绝服务并改变设计的功能。尽管文献中已经提出了许多HT检测方法,但HT定位的关键任务被忽略了。此外,一些现有的HT本地化方法具有多个弱点:依赖黄金参考,无法概括所有类型的HT,缺乏可扩展性,低位置分辨率以及手动功能工程/属性定义。为了克服他们的缺点,我们通过利用图形卷积网络(GCN)提出了一种新颖的,无参考的HT定位方法。在这项工作中,我们将电路设计转换为其内在数据结构,绘制并提取节点属性。之后,图形卷积对节点进行自动提取,以将节点分类为特洛伊木马或良性。我们的自动化方法不会通过手动代码审查来负担设计师的负担。它以99.6%的精度,93.1%的F1得分和低于0.009%的假阳性速率定位特洛伊木马信号。

The globalization of the Integrated Circuit (IC) supply chain has moved most of the design, fabrication, and testing process from a single trusted entity to various untrusted third-party entities worldwide. The risk of using untrusted third-Party Intellectual Property (3PIP) is the possibility for adversaries to insert malicious modifications known as Hardware Trojans (HTs). These HTs can compromise the integrity, deteriorate the performance, deny the service, and alter the functionality of the design. While numerous HT detection methods have been proposed in the literature, the crucial task of HT localization is overlooked. Moreover, a few existing HT localization methods have several weaknesses: reliance on a golden reference, inability to generalize for all types of HT, lack of scalability, low localization resolution, and manual feature engineering/property definition. To overcome their shortcomings, we propose a novel, golden reference-free HT localization method at the pre-silicon stage by leveraging Graph Convolutional Network (GCN). In this work, we convert the circuit design to its intrinsic data structure, graph and extract the node attributes. Afterward, the graph convolution performs automatic feature extraction for nodes to classify the nodes as Trojan or benign. Our automated approach does not burden the designer with manual code review. It locates the Trojan signals with 99.6% accuracy, 93.1% F1-score, and a false-positive rate below 0.009%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源