论文标题

部分可观测时空混沌系统的无模型预测

Immunofluorescence Capillary Imaging Segmentation: Cases Study

论文作者

Hou, Runpeng, Ye, Ziyuan, Yang, Chengyu, Fu, Linhao, Liu, Chao, Liu, Quanying

论文摘要

不工会是骨科诊所面临的挑战之一,用于拍摄骨间毛细血管的技术困难和高成本。细分容器和填充毛细血管对于了解毛细血管生长遇到的障碍至关重要。但是,现有用于血管分割的数据集主要集中在人体的大血管上,缺乏标记的毛细管图像数据集极大地限制了血管分割和毛细管填充的方法论开发和应用。在这里,我们提出了一个名为IFCIS-155的基准数据集,由155个2D毛细管图像组成,其分割边界和由生物医学专家注释的船只填充物以及19个大型高分辨率3D 3D毛细管图像。为了获得更好的骨间毛细血管图像,我们利用最先进的免疫荧光成像技术来突出骨间毛细血管的丰富血管形态。我们进行了全面的实验,以验证数据集和基准测试深度学习模型的有效性(\ eg UNET/UNET/UNET ++和修改的UNET/UNET/UNET ++)。我们的工作提供了一个基准数据集,用于培训毛细管图像细分的深度学习模型,并为将来的毛细管研究提供了潜在的工具。 IFCIS-155数据集和代码均可在\ url {https://github.com/ncclabsustech/ifcis-55}上公开获得。

Nonunion is one of the challenges faced by orthopedics clinics for the technical difficulties and high costs in photographing interosseous capillaries. Segmenting vessels and filling capillaries are critical in understanding the obstacles encountered in capillary growth. However, existing datasets for blood vessel segmentation mainly focus on the large blood vessels of the body, and the lack of labeled capillary image datasets greatly limits the methodological development and applications of vessel segmentation and capillary filling. Here, we present a benchmark dataset, named IFCIS-155, consisting of 155 2D capillary images with segmentation boundaries and vessel fillings annotated by biomedical experts, and 19 large-scale, high-resolution 3D capillary images. To obtain better images of interosseous capillaries, we leverage state-of-the-art immunofluorescence imaging techniques to highlight the rich vascular morphology of interosseous capillaries. We conduct comprehensive experiments to verify the effectiveness of the dataset and the benchmarking deep learning models (\eg UNet/UNet++ and the modified UNet/UNet++). Our work offers a benchmark dataset for training deep learning models for capillary image segmentation and provides a potential tool for future capillary research. The IFCIS-155 dataset and code are all publicly available at \url{https://github.com/ncclabsustech/IFCIS-55}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源