论文标题
从城镇唯一的交叉到2D玻色混合物中的液滴
The cross-over from Townes solitons to droplets in a 2D Bose mixture
论文作者
论文摘要
当两个玻色网冷凝物(标记为1和2)在空间上重叠时,系统的平衡状态取决于两种流体的混杂性标准。在这里,我们从理论上专注于两个空间维度的非现象状态,并探索少数族裔组成部分2形成的局部波数据包的特性,当浸入由组件1形成的无限浴室中时。我们解决了零温度的策略,并通过耦合的类别的类别场公式来描述两纤维系统。我们表明,这种波数据包仅适用于原子编号$ n_2 $以上的阈值$ n_2 $,该阈值对应于Soliton State。我们确定可以通过有效的单场方程来描述该局部状态的机制,直到液滴情况下,组件2的行为就像不可压缩的流体。我们研究了耦合流体的近平衡动力学,该动力学揭示了特定参数范围的局部激发模式。
When two Bose-Einstein condensates -- labelled 1 and 2 -- overlap spatially, the equilibrium state of the system depends on the miscibility criterion for the two fluids. Here, we theoretically focus on the non-miscible regime in two spatial dimensions and explore the properties of the localized wave packet formed by the minority component 2 when immersed in an infinite bath formed by component 1. We address the zero-temperature regime and describe the two-fluid system by coupled classical field equations. We show that such a wave packet exists only for an atom number $N_2$ above a threshold value corresponding to the Townes soliton state. We identify the regimes where this localized state can be described by an effective single-field equation up to the droplet case, where component 2 behaves like an incompressible fluid. We study the near-equilibrium dynamics of the coupled fluids, which reveals specific parameter ranges for the existence of localized excitation modes.