论文标题

对象箱:从中心到框以进行无锚对象检测

ObjectBox: From Centers to Boxes for Anchor-Free Object Detection

论文作者

Zand, Mohsen, Etemad, Ali, Greenspan, Michael

论文摘要

我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚的探测器和无锚的探测器相反,这些检测器更偏向其标签分配中的特定对象尺度,我们仅将对象中心位置用作正样本,而无论对象的尺寸或形状如何,都在不同的特征级别中平等地对待所有对象。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不合时宜的锚点,并允许学习每个对象的所有规模。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最新方法进行比较。我们观察到与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。

We present ObjectBox, a novel single-stage anchor-free and highly generalizable object detection approach. As opposed to both existing anchor-based and anchor-free detectors, which are more biased toward specific object scales in their label assignments, we use only object center locations as positive samples and treat all objects equally in different feature levels regardless of the objects' sizes or shapes. Specifically, our label assignment strategy considers the object center locations as shape- and size-agnostic anchors in an anchor-free fashion, and allows learning to occur at all scales for every object. To support this, we define new regression targets as the distances from two corners of the center cell location to the four sides of the bounding box. Moreover, to handle scale-variant objects, we propose a tailored IoU loss to deal with boxes with different sizes. As a result, our proposed object detector does not need any dataset-dependent hyperparameters to be tuned across datasets. We evaluate our method on MS-COCO 2017 and PASCAL VOC 2012 datasets, and compare our results to state-of-the-art methods. We observe that ObjectBox performs favorably in comparison to prior works. Furthermore, we perform rigorous ablation experiments to evaluate different components of our method. Our code is available at: https://github.com/MohsenZand/ObjectBox.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源