论文标题

用尖峰和斜纹拉索估算多元回归中稀疏直接效应

Estimating sparse direct effects in multivariate regression with the spike-and-slab LASSO

论文作者

Shen, Yunyi, Solís-Lemus, Claudia, Deshpande, Sameer K.

论文摘要

高斯链图模型的多元回归解释同时参数化(i)$ p $预测因子对$ q $结果的直接影响以及(ii)成对结果之间的残留部分协方差。我们引入了一种新方法,该方法将稀疏的高斯链型模型与Spike and-Slab Lasso(SSL)先验拟合。我们开发了一种期望的条件最大化算法,以获得直接效果的$ p \ times q $矩阵和$ q \ times q $剩余精度矩阵的稀疏估计。我们的算法迭代解决了一系列惩罚的最大可能性问题,并逐渐滤除可忽略的回归系数和部分协方差。因为它会适应单个模型参数,所以我们的方法被认为超过了模拟数据上的固定观点竞争对手。我们为我们的模型建立了后部收缩率,并以强大的理论保证支持了我们方法的出色经验表现。使用我们的方法,我们估计了饮食和居住类型对老年人肠道微生物组组成的直接影响。

The multivariate regression interpretation of the Gaussian chain graph model simultaneously parametrizes (i) the direct effects of $p$ predictors on $q$ outcomes and (ii) the residual partial covariances between pairs of outcomes. We introduce a new method for fitting sparse Gaussian chain graph models with spike-and-slab LASSO (SSL) priors. We develop an Expectation Conditional Maximization algorithm to obtain sparse estimates of the $p \times q$ matrix of direct effects and the $q \times q$ residual precision matrix. Our algorithm iteratively solves a sequence of penalized maximum likelihood problems with self-adaptive penalties that gradually filter out negligible regression coefficients and partial covariances. Because it adaptively penalizes individual model parameters, our method is seen to outperform fixed-penalty competitors on simulated data. We establish the posterior contraction rate for our model, buttressing our method's excellent empirical performance with strong theoretical guarantees. Using our method, we estimated the direct effects of diet and residence type on the composition of the gut microbiome of elderly adults.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源