论文标题
部分可观测时空混沌系统的无模型预测
The threefold way to quantum periods: WKB, TBA equations and q-Painlevé
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We show that TBA equations defined by the BPS spectrum of $5d$ $\mathcal{N}=1$ $SU(2)$ Yang-Mills on $S^1\times \mathbb{R}^4$ encode the q-Painlevé III$_3$ equation. We find a fine-tuned stratum in the physical moduli space of the theory where solutions to TBA equations can be obtained exactly, and verify that they agree with the algebraic solutions to q-Painlevé. Switching from the physical moduli space to that of stability conditions, we identify a one-parameter deformation of the fine-tuned stratum, where the general solution of the q-Painlevé equation in terms of dual instanton partition functions continues to provide explicit TBA solutions. Motivated by these observations, we propose a further extensions of the range of validity of this correspondence, under a suitable identification of moduli. As further checks of our proposal, we study the behavior of exact WKB quantum periods for the quantum curve of local $\mathbb{P}^1\times\mathbb{P}^1$.