论文标题
化学动力学的减少订单模型:原始化学网络的案例研究
Reduced Order Model for Chemical Kinetics: A case study with Primordial Chemical Network
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Chemical kinetics plays an important role in governing the thermal evolution in reactive flows problems. The possible interactions between chemical species increase drastically with the number of species considered in the system. Various ways have been proposed before to simplify chemical networks with an aim to reduce the computational complexity of the chemical network. These techniques oftentimes require domain-knowledge experts to handcraftedly identify important reaction pathways and possible simplifications. Here, we propose a combination of autoencoder and neural ordinary differential equation to model the temporal evolution of chemical kinetics in a reduced subspace. We demonstrated that our model has achieved a close-to 10-fold speed-up compared to commonly used astro-chemistry solver for a 9-species primordial network, while maintaining 1 percent accuracy across a wide-range of density and temperature.