论文标题
关于图形神经网络和基于形状功能的梯度计算的使用
On the use of graph neural networks and shape-function-based gradient computation in the deep energy method
论文作者
论文摘要
图形神经网络(GCN)在深度能量方法(DEM)模型中采用,以解决3D中的动量平衡方程,以使线性弹性和超弹性材料的变形,因为它可以基于多层perceptron(MLP)网络处理传统DEM方法的不规则DEM方法。将其精度和解决方案时间与基于MLP网络的DEM模型进行比较。我们证明,基于GCN的模型在数值示例中具有较短的运行时间,具有相似的精度。还访问了两种不同的空间梯度计算技术,一种基于自动分化(AD),另一个基于形状函数(SF)梯度的技术。我们提供了一个简单的示例,以证明与基于AD的梯度计算相关的应变定位不稳定性,并证明了通过四个数值示例在更一般的情况下存在不稳定性。基于SF的梯度计算被证明更健壮,即使在严重变形下也可以提供准确的解决方案。因此,基于GCN的DEM模型和基于SF的梯度计算的组合可能是解决涉及严重材料和几何非线性问题的有前途的候选人。
A graph neural network (GCN) is employed in the deep energy method (DEM) model to solve the momentum balance equation in 3D for the deformation of linear elastic and hyperelastic materials due to its ability to handle irregular domains over the traditional DEM method based on a multilayer perceptron (MLP) network. Its accuracy and solution time are compared to the DEM model based on a MLP network. We demonstrate that the GCN-based model delivers similar accuracy while having a shorter run time through numerical examples. Two different spatial gradient computation techniques, one based on automatic differentiation (AD) and the other based on shape function (SF) gradients, are also accessed. We provide a simple example to demonstrate the strain localization instability associated with the AD-based gradient computation and show that the instability exists in more general cases by four numerical examples. The SF-based gradient computation is shown to be more robust and delivers an accurate solution even at severe deformations. Therefore, the combination of the GCN-based DEM model and SF-based gradient computation is potentially a promising candidate for solving problems involving severe material and geometric nonlinearities.