论文标题

发现的边缘:控制边缘的本地错误发现率

The edge of discovery: Controlling the local false discovery rate at the margin

论文作者

Soloff, Jake A., Xiang, Daniel, Fithian, William

论文摘要

尽管错误发现率(FDR)作为大规模多重测试的误差控制度量的普及,但其近距离贝叶斯对应物的局部假发现率(LFDR)定义为特定零假设是假的后验可能性,是对个人拒绝和解释个人拒绝的合理性标准更直接相关的标准。但是,在小样本中很难使用LFDR,因为先前的分布通常未知。我们提出了一个简单的多重测试程序,并证明它控制了所有拒绝中最大LFDR的期望;同等地,它控制了最大的p值拒绝是一个错误的发现的概率。我们的方法在不了解先前的情况下运行,只是假设p值密度在零下均匀并在替代方面下降。我们还表明,我们的方法渐近地实现了甲骨文贝叶斯程序,以实现加权分类风险,在假阳性和假否定性之间进行最佳交易。我们得出了在拒绝方面获得的最大LFDR的限制分布,以及相对于Oracle程序的限制经验贝叶斯遗憾。

Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant standard for justifying and interpreting individual rejections. However, the lfdr is difficult to work with in small samples, as the prior distribution is typically unknown. We propose a simple multiple testing procedure and prove that it controls the expectation of the maximum lfdr across all rejections; equivalently, it controls the probability that the rejection with the largest p-value is a false discovery. Our method operates without knowledge of the prior, assuming only that the p-value density is uniform under the null and decreasing under the alternative. We also show that our method asymptotically implements the oracle Bayes procedure for a weighted classification risk, optimally trading off between false positives and false negatives. We derive the limiting distribution of the attained maximum lfdr over the rejections, and the limiting empirical Bayes regret relative to the oracle procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源