论文标题
激进的半行动
Radical semistar operations
论文作者
论文摘要
我们介绍并研究了整体域$ d $的一系列激进稳定操作。我们证明它们的集合是一个完整的晶格,是一组光谱半手操作的联接完成,并且当每个激进操作都是光谱时(在假设$ d $是rad-colon coohrent的假设下)时,我们表征了。当$ d $是一个prüfer域,使每组最小的素数理想都分散了,我们会完全对稳定的半决赛进行分类。
We introduce and study the set of radical stable operations of an integral domain $D$. We show that their set is a complete lattice that is the join-completion of the set of spectral semistar operations, and we characterize when every radical operation is spectral (under the hypothesis that $D$ is rad-colon coherent). When $D$ is a Prüfer domain such that every set of minimal prime ideals is scattered, we completely classify stable semistar operations.