论文标题

CKD-TRANSBT:临床知识驱动的混合变压器,具有与脑肿瘤分割相关的跨注意事项

CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with Modality-Correlated Cross-Attention for Brain Tumor Segmentation

论文作者

Lin, Jianwei, Lin, Jiatai, Lu, Cheng, Chen, Hao, Lin, Huan, Zhao, Bingchao, Shi, Zhenwei, Qiu, Bingjiang, Pan, Xipeng, Xu, Zeyan, Huang, Biao, Liang, Changhong, Han, Guoqiang, Liu, Zaiyi, Han, Chu

论文摘要

磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小斗挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来应对不同技术方面的BTS困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模式诊断脑肿瘤的临床知识,并提出了一种称为CKD-TransBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。带有提议的模态交叉意见区块(MCCA)的双支支混合编码器旨在提取多模式图像特征。提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的缝隙,我们提出了解码器中的反式和CNN特征校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于变压器的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,提出的模型可实现最先进的脑肿瘤分割性能。

Brain tumor segmentation (BTS) in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes. With the great success of the ten-year BraTS challenges as well as the advances of CNN and Transformer algorithms, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects. However, existing studies hardly consider how to fuse the multi-modality images in a reasonable manner. In this paper, we leverage the clinical knowledge of how radiologists diagnose brain tumors from multiple MRI modalities and propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS. Instead of directly concatenating all the modalities, we re-organize the input modalities by separating them into two groups according to the imaging principle of MRI. A dual-branch hybrid encoder with the proposed modality-correlated cross-attention block (MCCA) is designed to extract the multi-modality image features. The proposed model inherits the strengths from both Transformer and CNN with the local feature representation ability for precise lesion boundaries and long-range feature extraction for 3D volumetric images. To bridge the gap between Transformer and CNN features, we propose a Trans&CNN Feature Calibration block (TCFC) in the decoder. We compare the proposed model with five CNN-based models and six transformer-based models on the BraTS 2021 challenge dataset. Extensive experiments demonstrate that the proposed model achieves state-of-the-art brain tumor segmentation performance compared with all the competitors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源