论文标题
3D实例为1D内核
3D Instances as 1D Kernels
论文作者
论文摘要
我们介绍了一个3D实例表示,称为实例内核,其中实例由一维向量表示,该向量编码3D实例的语义,位置和形状信息。我们显示了实例内核通过简单地在整个场景中扫描内核,避免了对标准3D实例分段管道中的提案或启发式群集算法的严重依赖,从而实现了简单的掩盖推理。实例内核的想法是受到2D/3D实例分割中动态卷积的最新成功的启发。但是,我们发现由于点云数据的无序和非结构化性质,代表3D实例是不乏味的,例如,糟糕的实例定位可以显着降低实例表示。为了解决这个问题,我们构建了一个编码范式的新颖3D实例。首先,潜在的实例质心被定位为候选者。然后,设计了一个候选人合并方案,以同时汇总重复的候选者,并收集围绕合并的质心的上下文形成实例内核。实例内核可用后,可以通过在实例内核进行调节的动态卷积重建实例掩码。整个管道是通过动态内核网络(DKNET)实例化的。结果表明,DKNET的表现优于ScannETV2和S3DIS数据集的艺术状态,并具有更好的实例本地化。代码可用:https://github.com/w1zheng/dknet。
We introduce a 3D instance representation, termed instance kernels, where instances are represented by one-dimensional vectors that encode the semantic, positional, and shape information of 3D instances. We show that instance kernels enable easy mask inference by simply scanning kernels over the entire scenes, avoiding the heavy reliance on proposals or heuristic clustering algorithms in standard 3D instance segmentation pipelines. The idea of instance kernel is inspired by recent success of dynamic convolutions in 2D/3D instance segmentation. However, we find it non-trivial to represent 3D instances due to the disordered and unstructured nature of point cloud data, e.g., poor instance localization can significantly degrade instance representation. To remedy this, we construct a novel 3D instance encoding paradigm. First, potential instance centroids are localized as candidates. Then, a candidate merging scheme is devised to simultaneously aggregate duplicated candidates and collect context around the merged centroids to form the instance kernels. Once instance kernels are available, instance masks can be reconstructed via dynamic convolutions whose weights are conditioned on instance kernels. The whole pipeline is instantiated with a dynamic kernel network (DKNet). Results show that DKNet outperforms the state of the arts on both ScanNetV2 and S3DIS datasets with better instance localization. Code is available: https://github.com/W1zheng/DKNet.