论文标题

莫尔斯(Morse

Morse theory on Lie groupoids

论文作者

Ortiz, Cristian, Valencia, Fabricio

论文摘要

在本文中,我们介绍了Morse li lie classoid形态并研究其主要特性。我们表明,这个概念是莫里塔不变的,它在可区分的堆栈上产生了明确的摩尔斯功能概念。我们展示了摩尔斯引理的群体素化版本,该版本用于描述莫尔斯(Morse)lie lie closoid形态围绕其非排定临界轨道的关键亚组水平的拓扑行为。我们还证明了摩尔斯类型的不平等现象,用于某些分离的可区分堆栈并构建一个摩尔斯双复合体,其总共同体与基础lie lie类的Bott-Shulman-Stasheff同构同构。我们提供了几个示例和应用程序。

In this paper we introduce Morse Lie groupoid morphisms and study their main properties. We show that this notion is Morita invariant which gives rise to a well defined notion of Morse function on differentiable stacks. We show a groupoid version of the Morse lemma which is used to describe the topological behavior of the critical subgroupoid levels of a Morse Lie groupoid morphism around its nondegenerate critical orbits. We also prove Morse type inequalities for certain separated differentiable stacks and construct a Morse double complex whose total cohomology is isomorphic to the Bott-Shulman-Stasheff cohomology of the underlying Lie groupoid. We provide several examples and applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源