论文标题

蒙面的空间谱系自动编码器是出色的高光谱捍卫者

Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral Defenders

论文作者

Qi, Jiahao, Gong, Zhiqiang, Liu, Xingyue, Bin, Kangcheng, Chen, Chen, Li, Yongqian, Xue, Wei, Zhang, Yu, Zhong, Ping

论文摘要

深度学习方法论为高光谱图像(HSI)分析社区的发展做出了很大贡献。但是,这也使HSI分析系统容易受到对抗攻击的影响。为此,我们在本文中提出了一个掩盖的空间光谱自动编码器(MSSA),在自我监督的学习理论下,以增强HSI分析系统的鲁棒性。首先,进行了一个掩盖的序列注意学习模块,以促进沿光谱通道的HSI分析系统的固有鲁棒性。然后,我们开发一个具有可学习的图形结构的图形卷积网络,以建立全球像素的组合。这样,攻击效应将被每种组合之间的所有相关像素分散,并且可以在空间方面实现更好的防御性能,从而在空间方面实现,以改善限制性的示例,以限制标记的示例,以限制型号的范围,以置于光谱的范围。自我监管的方式:与最先进的高光谱分类方法和代表性的对抗性防御策略相比,对三个基准进行了三个基准的实验验证了MSSA的有效性。

Deep learning methodology contributes a lot to the development of hyperspectral image (HSI) analysis community. However, it also makes HSI analysis systems vulnerable to adversarial attacks. To this end, we propose a masked spatial-spectral autoencoder (MSSA) in this paper under self-supervised learning theory, for enhancing the robustness of HSI analysis systems. First, a masked sequence attention learning module is conducted to promote the inherent robustness of HSI analysis systems along spectral channel. Then, we develop a graph convolutional network with learnable graph structure to establish global pixel-wise combinations.In this way, the attack effect would be dispersed by all the related pixels among each combination, and a better defense performance is achievable in spatial aspect.Finally, to improve the defense transferability and address the problem of limited labelled samples, MSSA employs spectra reconstruction as a pretext task and fits the datasets in a self-supervised manner.Comprehensive experiments over three benchmarks verify the effectiveness of MSSA in comparison with the state-of-the-art hyperspectral classification methods and representative adversarial defense strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源