论文标题
通过纺纱和孤子方程的表面
Surfaces via spinors and soliton equations
论文作者
论文摘要
本文调查了三维和四维空间中表面的Weierstrass表示,并重点是它与Willmore功能的关系。我们还描述了此表示形式的应用,以构建Davey-Stewartson II方程的新型解决方案。它们具有常规的初始数据,在某些时间的某些时刻获得单点奇异性,并扩展到剩余时间的平滑解决方案。
This article surveys the Weierstrass representation of surfaces in the three- and four-dimensional spaces, with an emphasis on its relation to the Willmore functional. We also describe an application of this representation to constructing a new type of solutions to the Davey-Stewartson II equation. They have regular initial data, gain one-point singularities at certain moments of time, and extend to smooth solutions for the remaining times.