论文标题
部分可观测时空混沌系统的无模型预测
Automatic dataset generation for specific object detection
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In the past decade, object detection tasks are defined mostly by large public datasets. However, building object detection datasets is not scalable due to inefficient image collecting and labeling. Furthermore, most labels are still in the form of bounding boxes, which provide much less information than the real human visual system. In this paper, we present a method to synthesize object-in-scene images, which can preserve the objects' detailed features without bringing irrelevant information. In brief, given a set of images containing a target object, our algorithm first trains a model to find an approximate center of the object as an anchor, then makes an outline regression to estimate its boundary, and finally blends the object into a new scene. Our result shows that in the synthesized image, the boundaries of objects blend very well with the background. Experiments also show that SOTA segmentation models work well with our synthesized data.