论文标题
部分可观测时空混沌系统的无模型预测
TANSPEC: TIFR-ARIES Near Infrared Spectrometer
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present the design and performance of the TANSPEC, a medium-resolution $0.55-2.5~μ$m cryogenic spectrometer and imager, now in operation at the 3.6-m Devasthal Optical Telescope (DOT), Nainital, India. The TANSPEC provides three modes of operation which include, photometry with broad- and narrow-band filters, spectroscopy with short slits of 20$^{\prime \prime}$ length and different widths (from 0.5$^{\prime \prime}$ to 4.0$^{\prime \prime}$) in cross-dispersed mode at a resolving power R of $\sim$2750, and spectroscopy with long slits of 60$^{\prime \prime}$ length and different widths (from 0.5$^{\prime \prime}$ to 4.0$^{\prime \prime}$) in prism mode at a resolving power R of $\sim$100-350. TANSPEC's imager mode provides a field of view of 60$^{\prime \prime} \times 60^{\prime \prime}$ with a plate scale of 0.245$^{\prime \prime}$/pixel on the 3.6-m DOT. The TANSPEC was successfully commissioned during April-May 2019 and the subsequent characterization and astronomical observations are presented here. The TANSPEC has been made available to the worldwide astronomical community for science observations from October 2020.