论文标题

元研究的构图学习行为

Meta-Referential Games to Learn Compositional Learning Behaviours

论文作者

Denamganaï, Kevin, Missaoui, Sondess, Walker, James Alfred

论文摘要

人类利用构图从过去的经验到新颖的经历。我们假设我们的经验将经验分为基本的原子成分,这些成分可以通过新颖的方式重新组合,以支持我们参与新经验的能力。我们将其视为学习概括构图的能力,我们将提到将这种能力用作组成学习行为(CLB)的行为。学习CLB的一个核心问题是解决结合问题(BP)的解决方案。尽管人类轻松地表现是智力的另一个壮举,但最先进的人造代理人并非如此。因此,为了建立能够与人类合作的人工代理,我们建议开发一种新颖的基准测试,以通过求解BP的域 - 不合骨版本来研究代理商展示CLB的能力。我们从参考游戏的语言出现和基础框架中汲取灵感,并提出了参考游戏,标题为“元指的游戏”的元学习扩展,并使用此框架来构建我们的基准标准,即符号行为基准(S2B)。我们提供基线结果和错误分析,表明我们的基准是一个令人信服的挑战,我们希望这会激发研究社区发展更有能力的人工代理。

Human beings use compositionality to generalise from past experiences to novel experiences. We assume a separation of our experiences into fundamental atomic components that can be recombined in novel ways to support our ability to engage with novel experiences. We frame this as the ability to learn to generalise compositionally, and we will refer to behaviours making use of this ability as compositional learning behaviours (CLBs). A central problem to learning CLBs is the resolution of a binding problem (BP). While it is another feat of intelligence that human beings perform with ease, it is not the case for state-of-the-art artificial agents. Thus, in order to build artificial agents able to collaborate with human beings, we propose to develop a novel benchmark to investigate agents' abilities to exhibit CLBs by solving a domain-agnostic version of the BP. We take inspiration from the language emergence and grounding framework of referential games and propose a meta-learning extension of referential games, entitled Meta-Referential Games, and use this framework to build our benchmark, the Symbolic Behaviour Benchmark (S2B). We provide baseline results and error analysis showing that our benchmark is a compelling challenge that we hope will spur the research community towards developing more capable artificial agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源