论文标题

平衡可重新配置智能表面辅助的过空学习的准确性和完整性

Balancing Accuracy and Integrity for Reconfigurable Intelligent Surface-aided Over-the-Air Federated Learning

论文作者

Zheng, Jingheng, Tian, Hui, Ni, Wanli, Ni, Wei, Zhang, Ping

论文摘要

无线联邦学习(AIRFL)允许设备并行训练学习模型,并使用无线计算同步其本地模型。由于本地模型的汇总汇总,AIRFL的完整性很容易受到伤害。本文提出了一个新颖的框架,以平衡AIRFL的准确性和完整性,其中多种安宁纳设备和基站(BS)通过可重构智能表面(RIS)共同优化。关键贡献包括一个共同考虑AIRFL的模型准确性和完整性的新的和非平凡的问题,以及将问题转化为可牵引的子问题的新框架。在完美的通道状态信息(CSI)下,新框架将汇总模型的失真降至最低,并通过优化设备的发射光束器,BS的接收光束器和RIS配置,以交替的方式保留本地模型的可恢复性。在不完美的CSI下,新框架提供了光束形成器和RIS配置的强大设计,以打击不可忽略的通道估计错误。在实验上佐证的是,新型框架可以在完美的CSI下保持局部模型可恢复性,并在不完美的CSI下的接收天线数量小或中等时提高精度,并提高精度。

Over-the-air federated learning (AirFL) allows devices to train a learning model in parallel and synchronize their local models using over-the-air computation. The integrity of AirFL is vulnerable due to the obscurity of the local models aggregated over-the-air. This paper presents a novel framework to balance the accuracy and integrity of AirFL, where multi-antenna devices and base station (BS) are jointly optimized with a reconfigurable intelligent surface (RIS). The key contributions include a new and non-trivial problem jointly considering the model accuracy and integrity of AirFL, and a new framework that transforms the problem into tractable subproblems. Under perfect channel state information (CSI), the new framework minimizes the aggregated model's distortion and retains the local models' recoverability by optimizing the transmit beamformers of the devices, the receive beamformers of the BS, and the RIS configuration in an alternating manner. Under imperfect CSI, the new framework delivers a robust design of the beamformers and RIS configuration to combat non-negligible channel estimation errors. As corroborated experimentally, the novel framework can achieve comparable accuracy to the ideal FL while preserving local model recoverability under perfect CSI, and improve the accuracy when the number of receive antennas is small or moderate under imperfect CSI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源