论文标题
高温时回声增强分子取向
Echo-enhanced molecular orientation at high temperatures
论文作者
论文摘要
Ultrashort激光脉冲广泛用于无场分子取向 - 这一现象在化学反应动力学,超快分子成像,高谐波产生和Attosecond Science中很重要。但是,明显的分子取向通常需要旋转冷分子,例如在稀有的分子束中,因为混乱的热运动对方向过程有害。在这里,我们建议使用先前在强子加速器,自由电子激光器和激光激光激光分子中观察到的回声现象的机制来克服破坏性的热效应并在高温下实现有效的无现场分子方向。在我们的方案中,线性极化的短激光脉冲将分子旋转相空间中的宽热分布转化为许多分离的狭窄细丝,这是由于渗水后自由进化过程中的非线性相混合。属于个体丝的分子亚组具有大量减少的角速度分散体。它们在旋转上很冷,随后的中等TERAHERTZ(THZ)脉冲很容易将其定向。在回声过程中,结合了不同细丝的贡献,可以通过一定的延迟来实现分子气体的总体增强方向。我们的结果表明,回声增强方向的数量级比单独的THZ脉冲高。该机制是鲁棒的 - 它适用于不同类型的分子,方向程度对温度相对不敏感。该方案中使用的激光和THZ脉冲很容易获得,从而可以在各种应用中进行快速的实验演示和测试。将相位空间打破各个细丝以克服阻碍的热条件可能会发现超出分子取向的广泛应用。
Ultrashort laser pulses are widely used for transient field-free molecular orientation -- a phenomenon important in chemical reaction dynamics, ultrafast molecular imaging, high harmonics generation, and attosecond science. However, significant molecular orientation usually requires rotationally cold molecules, like in rarified molecular beams, because chaotic thermal motion is detrimental to the orientation process. Here we propose to use the mechanism of the echo phenomenon previously observed in hadron accelerators, free-electron lasers, and laser-excited molecules to overcome the destructive thermal effects and achieve efficient field-free molecular orientation at high temperatures. In our scheme, a linearly polarized short laser pulse transforms a broad thermal distribution in the molecular rotational phase space into many separated narrow filaments due to the nonlinear phase mixing during the post-pulse free evolution. Molecular subgroups belonging to individual filaments have much-reduced dispersion of angular velocities. They are rotationally cold, and a subsequent moderate terahertz (THz) pulse can easily orient them. The overall enhanced orientation of the molecular gas is achieved with some delay, in the course of the echo process combining the contributions of different filaments. Our results demonstrate that the echo-enhanced orientation is an order of magnitude higher than that of the THz pulse alone. The mechanism is robust -- it applies to different types of molecules, and the degree of orientation is relatively insensitive to the temperature. The laser and THz pulses used in the scheme are readily available, allowing quick experimental demonstration and testing in various applications. Breaking the phase space to individual filaments to overcome hindering thermal conditions may find a wide range of applications beyond molecular orientation.