论文标题

Ganzilla:生成对抗网络中用户驱动的方向发现

GANzilla: User-Driven Direction Discovery in Generative Adversarial Networks

论文作者

Evirgen, Noyan, Chen, Xiang 'Anthony'

论文摘要

生成对抗网络(GAN)在许多应用领域中广泛采用,例如数据预处理,图像编辑和创造力支​​持。但是,GAN的“黑匣子”性质可防止非专家用户控制模型生成的数据,并产生大量的先前工作,该工作集中在算法驱动的方法上,以提取编辑说明以控制GAN。补充,我们提出了一个ganzilla:用户驱动的工具,该工具使用户能够使用经典的散点/收集技术来迭代地发现指示,以实现其编辑目标。在与12名参与者的研究中,Ganzilla用户能够发现(i)(i)编辑图像匹配提供的示例(封闭任务)的说明,并且(ii)遇到了一个高级目标,例如,使脸更加快乐,同时表现出跨个体的多样性(开放任务)。

Generative Adversarial Network (GAN) is widely adopted in numerous application areas, such as data preprocessing, image editing, and creativity support. However, GAN's 'black box' nature prevents non-expert users from controlling what data a model generates, spawning a plethora of prior work that focused on algorithm-driven approaches to extract editing directions to control GAN. Complementarily, we propose a GANzilla: a user-driven tool that empowers a user with the classic scatter/gather technique to iteratively discover directions to meet their editing goals. In a study with 12 participants, GANzilla users were able to discover directions that (i) edited images to match provided examples (closed-ended tasks) and that (ii) met a high-level goal, e.g., making the face happier, while showing diversity across individuals (open-ended tasks).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源