论文标题
分析和模仿飙升鸟类的优化飞行物理:一种差异的几何控制和超级寻求系统方法,并实时实施
Analyzing and Mimicking the Optimized Flight Physics of Soaring Birds: A Differential Geometric Control and Extremum Seeking System Approach with Real Time Implementation
论文作者
论文摘要
几个世纪以来,对于生物学家,物理学家,航空/控制工程师和应用数学家而言,高耸的鸟类(例如信天翁和老鹰)一直是神秘而有趣的。这些引人入胜的生物生物具有长时间的飞行能力,而花费很少的能量。这种飞行技术/机动称为动态飙升(DS)。对于生物学家和物理学家而言,DS现象不过是对鸟类与自然相互作用的非常优雅的能力,并以最佳方式使用其物理乙醚的奇迹,以提高生存和能量效率。对于工程社区而言,它是灵感的来源,也是毫无疑问的生物模仿机会。在文献中,已经在建模和构建控制系统上完成了重要的工作,这些控制系统可以模仿DS操纵。然而,文献中DS现象的数学表征仅限于最佳控制配置,这些配置利用了数值优化算法中的发展以及控制方法来识别鸟/模仿系统采取的最佳DS轨迹(或将其采取)。在本文中,我们提供了一种新颖的两层数学方法,以简单而实时的实现中表征,模型,模仿和控制DS。第一层将是DS问题的差异几何控制公式和分析。第二层将是DS哲学与一类动态控制系统之间的联系,称为极端寻求系统。我们认为,我们的框架捕获了更多的鸟类的生物学行为,并为系统生物学和自然现象中使用的几何控制理论和极值寻求系统打开了大门。提供了模拟结果以及与强大的最佳控制求解器的比较,以说明引入方法的优势。
For centuries, soaring birds -- such as albatrosses and eagles -- have been mysterious and intriguing for biologists, physicists, aeronautical/control engineers, and applied mathematicians. These fascinating biological organisms have the ability to fly for long-duration while spending little to no energy. This flight technique/maneuver is called dynamic soaring (DS). For biologists and physicists, the DS phenomenon is nothing but a wonder of the very elegant ability of the bird's interaction with nature and using its physical ether in an optimal way for better survival and energy efficiency. For the engineering community, it is a source of inspiration and an unequivocal promising chance for bio-mimicking. In literature, significant work has been done on modeling and constructing control systems that allow the DS maneuver to be mimicked. However, mathematical characterization of the DS phenomenon in literature has been limited to optimal control configurations that utilized developments in numerical optimization algorithms along with control methods to identify the optimal DS trajectory taken (or to be taken) by the bird/mimicking system. In this paper, we provide a novel two-layered mathematical approach to characterize, model, mimic, and control DS in a simple and real-time implementation. The first layer will be a differential geometric control formulation and analysis of the DS problem. The second layer will be a linkage between the DS philosophy and a class of dynamical control systems known as extremum seeking systems. We believe our framework captures more of the biological behavior of soaring birds and opens the door for geometric control theory and extremum seeking systems to be utilized in systems biology and natural phenomena. Simulation results are provided along with comparisons with powerful optimal control solvers to illustrate the advantages of the introduced method.